Wavelet Transform of Fractional Integrals for Integrable Boehmians

نویسندگان

  • Deshna Loonker
  • P. K. Banerji
چکیده

The present paper deals with the wavelet transform of fractional integral operator (the RiemannLiouville operators) on Boehmian spaces. By virtue of the existing relation between the wavelet transform and the Fourier transform, we obtained integrable Boehmians defined on the Boehmian space for the wavelet transform of fractional integrals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet Analysis on a Boehmian Space

We extend the wavelet transform to the space of periodic Boehmians and discuss some of its properties. 1. Introduction. The concept of Boehmians was introduced by J. Mikusi´nski and P. Mikusi´nski [7], and the space of Boehmians with two notions of conver-gences was well established in [8]. Many integral transforms have been extended to the context of Boehmian spaces, for example, Fourier trans...

متن کامل

Integrable Boehmians, Fourier Transforms, and Poisson’s Summation Formula

Boehmians are classes of generalized functions whose construction is algebraic. The first construction appeared in a paper that was published in 1981 [6]. In [8], P. Mikusiński constructs a space of Boehmians, βL1(R), in which each element has a Fourier transform. Mikusiński shows that the Fourier transform of a Boehmian satisfies some basic properties, and he also proves an inversion theorem. ...

متن کامل

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by  Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...

متن کامل

-

Consider the semidirect product group H ×? K, where H and K are two arbitrary locally compact groups and K is also abelian. We introduce the continuous wavelet transform associated to some square integrable representations H ×? K. Moreover, we try to obtain a concrete form for admissible vectors of these integrable representations.

متن کامل

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012